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Exact Results for a Meniscus in a Three-Phase 
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The shape of a meniscus of one phase between two others is studied in two 
dimensions using random walk models. An interface with a meniscus is 
approximated by two random walks forming microscopic droplets of the intrud- 
ing phase before and after a macroscopic lens. Within this class of models, we 
establish a Wulff construction and prove the Herring relations between contact 
angles. We give explicit formulas for the contact angles as functions of tem- 
perature, both at low temperatures and near the wetting transition. 

KEY WORDS: Contact angle; wetting transition; Wulff construction; 
Herring relations. 

1. INTRODUCTION 

The coexistence of three or more phases is a common phenomenon in 
nature. From a theoretical point of view, this subject has motivated in par- 
ticular the Ports and Blume-Capel models. The geometrical features of this 
coexistence have, however, been considered only recently in statistical 
mechanics. ~1) The shape of a lens of one phase between two others has been 
studied in two dimensions using a three-random-walk model: the first two 
walks serve as upper and lower boundaries to the lens; they meet only at 
the endpoints of the lens, where the third walk starts. The aim of the pre- 
sent paper is to provide exact results for a meniscus within a two-random- 
walk model, where the two walks can meet and separate as often as they 
like, thus forming many microscopic droplets of the intruding phase before 
and after a macroscopic lens. 
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The paper is organized as follows: in Section 2 we introduce the 
problem in terms of SOS (solid-on-solid) models (2) and describe the Wulff 
construction for a meniscus in a three-phase system. In Section 3 we derive 
technical results based on the reflection principle and the necklace 
representation (3'4) for a pair of restricted SOS models as in ref. 5. In Sec- 
tion 4 we use these results and the Herring relations (6) to discuss contact 
angles both near the second-order wetting transition and at low tem- 
peratures. A comparison is given with a three-random-walk model, as 
in ref. 1, which has a first-order transition. In Section 5 we prove the 
microscopic validity of the Wulff construction and of the Herring relations 
for the above models, following the method of ref. 7. 

2. SOS MODELS AND THE WULFF CONSTRUCTION 
FOR A MENISCUS 

From a macroscopic point of view, a meniscus is characterized in par- 
ticular by two contact angles 01 and 02 (see Fig. 1), which should obey the 
thermodynamic Herring relations(6): 

aAs(01) cos 01 - a'As(01) sin 01 

+ asc(02) cos 02 - ~r~c(02) sin 02 = ~Ac(O) (2.1) 

a,~B(0X) sin 01 + a~B(0x) cos 01 = ~rsc(02) sin 02 + ~'~c(02) cos 02 (2.2) 

where axy denotes the interfacial tension between X and Y and O'xy denotes 
its derivative with respect to the angle between the XY interface and a fixed 
given direction. 

The validity of these relations has been proved in ref. 1 for a Gaussian 
three-random-walk model in a canonical ensemble where the volume of the 
intruding phase is a fixed fraction of the total volume. It has also been 
shown in ref. 1 that such a meniscus may be viewed as a superposition of 
two droplets of appropriate volume (as Fig. 1 cut along the dashed linet, 
of respective shapes given by the Wulff construction for droplets on a wall. 
We give here the thermodynamic argument which underlies this double 
Wulff construction in general. 

Figure 2a shows a droplet of B above a horizontal line (dashed line) 
with the appropriate values for the coordinates (xM, YM) of the contact 
point M in a frame of reference centered at the Wulff point 0, as functions 
of the contact angle 01. The value cos 01 aAB(0l) -- sin 01 o-~B(01) for YM 
follows from the Wulff construction, as shown in ref. 8. The value 
sin 01 aAs(01) + cos 01 cr~B(01) for xM follows by rotation by 7~/2. Compar- 
ing now with the Herring relations yields the double construction for a 
meniscus as indicated in Fig. 2b. The method is also valid in dimension 3. 



M eniscus in a Three- Phase System 1123 

A 

Fig. 1. A meniscus of phase B between A and C characterized by two contact angles 01 
and 02. 

The SOS-type models we shall consider can be defined as follows. For 
one-dimensional interfaces characterized by heights h0,..., h~v, the surface 
tension at angle 0 is given by 

~a(O) = lim cos 0 log N ~  - - - - - ~  ~ e ~E~h~ (2.3) 
c~ ho,,,,, hN 

where E(h o ..... hN) defines the energetic cost of the interface. We assume a 
general form 

N 

E(ho, , hN) = ~ P(h~_~ - hi) (2.4) 
1 

where P(x) is an even function on 7/such that 

and 

with 

- ~  < P ( x )  ~< +oo 

lim P(x)= Cmax (2.5) 
x ~  +co X 

0 < Cma x ~ ~'- ( ~  

Let us now formulate a general lemma. 

l_emma.  For  the models defined in (2.3)-(2.5), for all 0 with 
0 ~< 0 < 0 . . . .  there exists a unique Co with 0 ~< Co < emax such that 

tan 0 - Zx xe-~P(~) + ~o~ 
Z x  e -~p(x} + ~x (2.6) 
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where Oma • is obtained from the above expression with Co replaced by Cma ~. 
This leads to 

fla(O) = - c o s  0 log ~ e ~P(x)+~o(x ta.O) (2.7) 
x 

fl cos 0 a(O) - ~ sin 0 a'(O) = - l o g  ~" e-~e(x)+ ~o,: (2.8) 

fl sin 0 a(O) + [3 cos 0 a'(O) = co (2.9) 

(a) 

Fig. 2. 
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(b) 
(a) A sessile drop in the RSOS model and sketch of the Wuiff construction. 
(b) Double Wulff construction for a meniscus in the double RSOS model. 
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Proof. Equations (2.6) and (2.7) were proven in ref. 8 for continuous 
SOS models. The proof here is similar and (2.8) and (2.9) follow easily. 

Suppose now that the AB and BC interfaces are given by restricted 
SOS models, defined by 

P , , (J(1 + [x]) if 0 1 = ~  Ixl = or 
AB(x) ( + O:3 otherwise 

and similarly for PBc(X) with J replaced by J'. The lemma then gives, with 
flJ = K and fiJ' = K', 

tan 01 = e ~(eC~ - e-C~ + e X(eC~ + e coo] (2.10) 

t a n 0 2 = e  X'(e62-e  62) / [ l+e -X ' (e42+e  c~ (2.11) 

where Co and c~ are associated, as in the lemma, to PAB(') and Psc( ' ) ,  
respectively. The second Herring relation (2.2), together with (2.9), implies 

% = C'o2 =-- c (2.12) 

The first Herring relation then becomes, using (2.8), 

[ e - K + e  2tC(eC+e-C)][e K'+e-21C(e~+e-C)]=e-~Ac(~ (2.13) 

The quadratic equation (2.13) can now be solved tor e~+ e -c, which 
yields the angles 01 and 02 from (2.12), (2.10), and (2.11). The result is 
particularly simple if K =  K': 

tan 2 01 = tan 2 02 = 1 - 2e [~~176 2K]/2 ._~ eflaxc(O)--2K 4e~OAc(O)-4K (2.14) 

The difficult part of the problem remains, namely to study the interfa- 
cial tension a~c(O ) of the AC interface in the presence of B. We shall 
compute aAc(O) in a model where the system is described by two random 
walks h~ and h; with hg>~h;. Phase A lies above h~, phase C lies below h;, 
and "phase" B is between h~ and h; and is present at i only if hg > h;. The 
two random walks are chosen as restricted SOS models so as to obtain a 
solvable model. Other cases have been considered in ref. 4, where the 
bubble partition function is considered as a combination of one random 
walk for the center-of-mass motion and another one for the relative 
motion. This point of view is exact within a Gaussian model, but can only 
be an approximation for non-Gaussian SOS models such as the one con- 
sidered in the present paper. 

Our two interfaces (see Fig. 3) are characterized by heights 

ho=0;  hi~7/, h i - h i _ l = l , O ,  - 1 ,  i = l , . . . , N  

h ; = 0 ;  h;e2~, h ' i -  h'~_~ =1 ,0 ,  - 1 ,  i = 1  ..... N; h 'u=hu 

(2.15) 
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Fig. 3. 
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A typical configuration in the two-random-walk model. 

with the restriction 

hi >~ h; Vi 

The Boltzmann factor is then 

exp - K  ( l + l h ~ - h ~  ~[-K'~(l+[h;-h'~_~l)  
1 

- ( K " -  K - K ' )  ~ fh,,h;(1 + Ihe-h~ 1f ~h l , h : _ l )  
1 

(2.16) 

(2.17) 

3. M E T H O D  

Let QN be the partition function obtained by summing up (2.17) with 
the constraints (2.15) and (2.16). The corresponding interfacial tension 
~rAc(0 ) is given by 

flCrAc(O)= lim 1 N~ c.~ - - F  l~ QN 

We shall compute aAc(O) near the wetting transition and near T=  0 
using the technique developed in ref. 5. The reader who is interested in the 
physical results may skip this technical section. For simplicity, we now fix 
K' = K. Let 

Q b = ~ ' e x p  - K  (2+lh~-h~_~[+lh;-h'~ ~[) (3.1) 
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where the sum is over the configurations (2.15) with the restriction 

hi>h~,  i=  1 ..... N -  1 

Let 

1127 

t N t Q~v=Z"exp - K " ~ ( l + l h i - h i  ,I) 
1 

where the sum is over the configurations (2.15) with the restriction 

hi = h~ Vi = 0,..., N 

Let us define the generating functions 

G(z ) :  ~ zNQN 
N=0 

Gb(z) = ~ zNQbN 
N=2 

Ga(Z)= ~ N a= z QN [ l _ z ( e - K " + 2 e  2K")] 1 
N=2 

It is then straightforward to obtain 

Go(z) (3.2) 
G(z) = 1 - v2Ga(z) Gb(Z) 

with v 2 = e  ~:,,+2K. It can be derived that Gb(z) is analytic in the disk 

[z[ < Zb= ( e - K + 2 e  -2K) 2 (3.3) 

and is singular but finite at z = zb. The quantity e ~Ac(~ must equal the 
closest singularity of G(z). Therefore 

e ~Ac(~ = Min {zb, Zab } 

where Zab is the root of the equation 

1 = v2Ga(z) Gb(z) (3.4) 

More precisely, we have 

e~Ac(o~ = ~z b for T ~  Tw 
[ Z ~b T <~ Tw 
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and the wetting transi t ion line z~b = zb is given by the equatton" _ (5) 

3 e - K + e  2 X _ e - K ( l + 2  e K)l/2 
re(K, K")  = eK, , [ (e_K+ 2e_2K)2_ (e K"+ 2e-2X")]  = 1 (3.5) 

and is reproduced in Fig. 4. 
In the present  paper,  we are interested in part ial  wetting, i.e., Zab < G,  

and we shall est imate Gb near  the wetting transit ion and at low tem- 
peratures.  In  order  to find Z~b f rom (3.4), we start  f rom the exact formula  (5) 

where 

Co(z) -- C~(z) - 2ze --4Kc0(z ) CI(Z ) Gb(Z; 1, O) 
Ga(Z) - (3.6) 

2Co(z) Ca(z) 

f ~n ~ e - ixO 
Cx(z) = l _ z e _ 2 X ( l + 2  e Kcos 0) 2 (3.7) 

1 
ca(z)  = 1 - z(e-2K + 2e-aX) 

Cl(2r ) - - ze -4KFCI(2)  Co(2 ) - C 2 ( z  ) CI(Z)] 
Gb(z; 1, 0 ) =  (3.8) 

Co(z ) q- %e-4K[c2(z) Co(z ) -- C12(%)] 

e-K I' 

3 r ,w ,  2 r ,w .  / ~ / / ! 
/ 

/ 

J / 

/ / /I 

/ z 
/ I  I I J'~>2J 

/ / 

/ I 

I / 

e-ZK 

Fig. 4. Phase diagram for the two-random-walk model [2 r.w.; cf. Eq. (3.5)] and three- 
random-walk approximation [3 r.w.; of. Eq. (4.11)]. The dashed lines represent trajectories 
as the temperature is varied for fixed values of J and J". 
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By isolating the singular part of Cx, 

C x ( z )  = C o ( z )  - d x ( z )  

we get 

Gb(Z; 1, O) 

= [ i  - z e - ~ ' % ( z ) ] [ 1  - C o ~ ( Z )  d~(z) ]  

x({ l+ze -4K[2d l (z ) -d2 (z ) ]  { 1 - C o l ( Z )  

Near the wetting transition, we can 
( z b - z )  1/2. We have 

and 

with 
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(3.9) 

1 +ze-aKE2dl(z)-  d2(z)] 

(3.10) 

expand Gb(Z) in powers of 

Co l(z ) = 23/2 e 3K/2(1 + 2e K)(Z b - -  Z)1/2 _[_ O(Zb __ Z)3/2 

d x ( z )  = dx(zb) - -  $ x ( z b  - -  z )  ~/2 + O ( z b  - z )  

6x = x 22 7/2eK/2(1 + 2e K)5/2 

dl(Zb) = 2-2eK(1 + 2e-X)3/2 

d2(Zb) = 2-1eZ~C(1 + 2e K)3/Z [(1 + 2e--K) ~/2 -- 1] 

It may be worth pointing out that dl(zb) and d2(Zb) happen to be 
directly computable from (3.6) and (3.9), whereas 6x can be extracted from 
the divergence of (d/dz) dx(z) as z ]" zb. Expanding Gb(z; 1, 0) to first order 
in ( z b - z )  1/2 now gives 

Gb(z; 1, 0 ) =  Gb(z; 1, 0)[1 --2 3/2e-K/2 

X { ( l + 2 e  x )2+( l+2e-X)3 /2}(zb_z)  ~/2+O(zb-z )]  

from which we get 

Gb(Z) = Gb(zb)--2-3/Ze 3K/2(1 + 2e--K) 1/2 

X [2 + 3e -K + (2 -- eX)(1 + 2e--K)I/2](Z b -- Z) 1/2 + O(zb -- Z) 

which we use to solve (3.4) near Tw. We obtain 

zb ( m - - l )  2 Gb(zb)2 
zab= -- - -  + O ( m - -  1) 3 (3.11) 

k m / B(zb) 2 
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with m given by (3.5) and 

Gb(Zb) = e 'v(1 + 2e -K)-2 [3 + e - K -  (1 + 2e-'V)l/2] 

B(zb) = 2 - 3/2e - 3K/2( 1 + 2 e -  K) - 1/2 [2 + 3e - X + (2 -- e - K)( 1 + 2e K)1/2 ] 

Let us now consider the low-temperature regime. In Gb(Z), we 

approximate  Qb n by 

Qb = 4e- I~+ 1)2K[1 + O(nZe-2K)] 

This corresponds to a droplet of length n and height 1, with correc- 
tions due to excitations of energy factor e -2~v and entropy factor n 2. We 
thus get 

Gb(z)=4e 2re ~ z%-2~,v[1 +O(nZe 2nK)] 
n>~2 

1 +O(e-2X(1--ze 2K)--2) 
= 4z2e 6K 

1 - -  z e - 2 ~ :  

which we use to solve (3.4) at low temperature. We obtain zae = A/B, where 

A = e  K"+e-2K+2e 2K"--(e-X"--e-2K){l+4e 2K"(e--X"--e--aK) * 

+ 16e K" 8K[l+O(e-2K(l__zaee-2K)-2)( e ,V" e--2K ) 2]}1/2 

B=2e K"-2K{1 + 2 e  K"--4e2*"-6K[1 +O(e 2K(1 --Zabe -2K) 2)]} 

We now restrict our  at tention to the case 

2 K - K "  >>e - 'v (3.12) 

which turns out  be necessary to keep the error  term small: 

e-2K(1 - zaae -2K) -2  ~ 1 

The formula for zab can then be simplified: 

zae=eK,,{ l_2e-K, ,_4e 6t,;+2K"(e2X K" 1)--1 

+ O(e-2K"+e 2K K"(e2K--K"__I)--3)} (3.13) 

The results (3.11) near Tw and (3.13) near T = 0  will be used and dis- 
cussed in the next section. 
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4. RESULTS 

Using the identity 

e fltyAC(O) ~- Zab , T< Tw 

we thus get from (3.11) and (3.3), near Tw, 

flCrAc(0 ) = 2K-- 2 log(1 + 2e - x )  - (e--K+ 2e--ZK) 2 

\ m J B(Zb) 2 + O(m-- 1) 3 (4.1) 

and from (3.13), near T = 0 ,  

flaAc(O) = K " -  2e-~:~ 6K+ZK"(e~K--K"-- t) -~ 

+ O(e-2K"+e 2K--X"(e2K--K"-- 1) -3) (4.2) 

It is clear from (3.5) that m - 1  vanishes as T w - T  and therefore the 
specific heat has a finite jump at Tw which is characteristic of a second- 
order transition. This can also be seen in the behavior of the contact angle 
01: combining (4.1) and (2.14), we obtain for T? Tw 

Oi = 21/2e_3K/2(l + 2_K)l/2 mm-- 1 ~ + O(0~) 

= R(Tw - T) + O(Tw - T) 2 (4.3) 

where R is a positive constant. The line 01 = R ( T w - T )  is reproduced in 
Fig. 5 (dotted line). 

The behavior of the contact angle at low temperature is obtained using 
(4.2) and (2.14): 

tan 01 = 1 --e--K+K"/2-{-e--K K " / 2 - I - 2 e - - T K + S K " / 2 ( e 2 K - - K " - -  1) 1 

__ 2 e - - 3 K + K " / Z ( e K - - K " / 2  1)-1 

+ O(e-2~"+ e--ZK--X"(eZK--K"-- 1) -3) (4.4) 

which is plotted in Fig. 5 (dashed line). Equation (4.4) becomes more 
illuminating if we consider 

K" = 2 K -  6 (4.5) 

with 

e K ~ 6 ~ l  
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Fig. 5. Behavior of the contact angle 01 as a function of temperature T for J =  1 and J" = 1.8. 
The solid line represents the three-random-walk approximation [cf. (4.10)]. The dashed line 
represents the low-temperature expansion in the two-random-walk model [cf. (4.4)] and the 
dotted line corresponds to the expansion near T,, in the same model [cf. (4.3)]. 

so that  (4.4) becomes 

3 32 
01 = ~ - - - ~ - -  2e-2K3-1  + O ( e - a K 3 - 3  + 33) (4.6) 

Equat ion  (4.6) gives the var ia t ion of 01 f rom T =  0, where 01 = ~/4, up 
to a tempera ture  such that  01 is small, but  much  larger than  e x. When  
2 K - K "  is small, the wett ing transit ion is in a low- tempera ture  regime, and  
it makes  sense to compare  the expansions near  T =  0 and near  Tw. It  turns 
out, however,  that  the two ranges of valicity do not  overlap. The expansion 
near  Tw makes  sense in the low- tempera ture  regime if 

K" = 2 K -  2e-K + O(e-2K) (4.7) 

We then get 

01 = ( 2 _ 2 )  e - ~ +  O(e 2K) (4.8) 

Fo r  compar ison,  we shall now consider a simpler model  where the 
interface with a meniscus is described by three independent  interfaces which 
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meet only at the endpoints of the meniscus. We can then compute aAc(0) 
exactly at all temperatures from a single random walk model. For a restric- 
ted SOS model with f l J "=  K", we get 

fla Ac(O) = K" -- log(1 + 2e -x ')  (4.9) 

From (2.14) we then obtain 

tan 20 a = 1 --2e-K+X"/2(1 +2e--X")-l/2+e 2K+K"(1 +2 e  K") 

-- 4e--4K+X~ + 2e-K") -1 (4.10) 

which is shown in Fig. 5 (solid line). The wetting transition line is here 
given by 

or 

K " - l o g ( 1  +2e  K")=2K--21og( I  +2e  -K) 

A + (A 2 + 8A) 1/2 
K" = log (4.11) 

2 

with 

A = e2K( 1 + 2e- K) - 2 

This transition line is shown in Fig. 4. Near the wetting transition, the 
contact angle will behave according to 

T w  - 2 

where the constant A3 is defined by 

L 2K'e K'(l+2e x')-~ 1 
A ~ = -  -4Ke  X ( l + 2 e  K ) - - l + l o g [ ( l + 2 e  X")(l+2e K) 2] 

2 + e K + l o g ( l + 2  K)--2e--K(l+�88 -x )  1 

which is to be evaluated at the wetting transition in this three-random-walk 
model. Formula (4.12) shows that, within this approximation, the wetting 
transition is of first order. 

At low temperature, we obtain here, using (4.5), 

tan 2 01 = 1 -- 2e -a/2 + e -6 + e K"(2e-a/2 -- 2e -a -- 4e -2a) + O(e 6/2--2K") 
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which becomes, in case 6 = 2 K - K "  is small, 

1= . . . .  
6 62 

2 2 
4e-ZX(~ 1+5e  2K+O(6e 2~+63) (4.13) 

Comparing with (4.6), we see that the three-random-walk model differs 
from the two-random-walk model at the order e 2K6 ~. 

5. M I C R O S C O P I C  VALID ITY  OF THE DOUBLE W U L F F  
C O N S T R U C T I O N  A N D  OF THE HERRING RELATIONS 

We first establish the shape of one large meniscus (Theorem 1 and 
Corollary) and then consider a "gas" of menisci embedded in an interface 
(Theorem 2), for which we show that the bulk of the total volume of the 
intruding phase is concentrated in one large meniscus. 

Theorem 1. Let h~-.-h N, h'~...hN be random variables in 7/ dis- 
tributed according to 

2v,~vexp - ~ P l ( h i - h i _ l ) -  ~ P2(h;-hl 1) 6h~,h'~g) v,~{h, ~;) 
i = l  i=1 

(5.~) 

where ho = h8 = 0, P~(x) and P2(x) satisfy the hypotheses of the Lemma (in 
Section 2), and N and V = 2N 2 are integers, 

Q y = { 1 0  if x = y  
otherwise 

and the partition function ZV, N normalizes the probability. 
Let 

~.xEZ xe-P~(x)+cx 
(5.2) t l ( c )=  Zx~ze  eL(xl+cx 

~r,(c) = ~ c't~(c') de' (5.3) 

and similarly for t2(c ) and 12(C). Let c). be the solution of 

I~(c) + I2(c) = 2c 2 (5.4) 

Then, for any sequence N ~  oo with V = 2 N  2 integer, the random 
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variables h i -  hi_ l and h~ - h' i_ 1 
tributed according to 

e x p ( -  ~ {P~(hi-hi ~)+P2(h~-h: ~) 
l 

If <. }N denotes expectation with respect to (5.1), we have 

<ht-h~ 1}N=tl( (1--~)cx)+O(N -1) (5.6) 

< h~} N= N tl(c ) dc + O(1) 
1 2 i /N)  c,~ 

( (1--2i~Nj C~) <h;-h'~_,}N=-tZkk + O ( N  -1) (5.7) 

<h; }s = --N t2(c) dc + O(1 ) 
( 1  - -  2i/ N )  c2 

>N- 

= O ( N  -~) ViCj 

<(h;-h'i_~)(hj-h'j_~)>u- <h;-h;_~}N <hj-hg_l> N 
= O ( N  -~) Vi#j  

<(h~-hi_~)(hj-h)_,)}u- <h~-h~_~>N <h)-h)_~}~v 
= O(N- 1 ) Vi, j 

+ O(log N) (5.8) 

with 

1135 

for i =  1,..., N are asymptotically dis- 

zl (c)=  ~ e -P'(x)+c(x-'l(c)) 
x E Z  

and similarly for z2(c). 

Proof. The proof is essentially the same as for a drop on a wall. (y~ 
We have two random walks which start together (ho = hl = 0) and are sub- 
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ject to two global constraints: they meet after N steps (hN=h~) and 
enclose a fixed area [ Z  ( h i - h ~ ) =  V]. The Kronecker form of the con- 
straints allows us to introduce Lagrange multipliers into the Boltzmann 
factor without changing the probability distribution. The conjugate fields 
can then be adjusted so that the constraints remain satisfied in average 
when the Kronecker 6's are removed. The corresponding decoupled 
measure is denoted ( . ) o  (C~ N)) and is just (5.5) except that c~ is replaced 
by c~u)~ C~ defined from Riemann sum approximations to I1(c) and I2(c). 
A suitably generalized version of the local central limit theorem then shows 
that reintroducing the Kronecker constraints induces negligible effects as 
N-~ 0% as stated in the theorem. 

Coro l l a ry .  Under the hypotheses of Theorem 1, suppose that the 
measure (5.1) is restricted to 

hi>h~, i= 1, N -  1 

and denote (-)N,h~h' and Zv, u the corresponding expectation values and 
partition function. Then the conclusions of Theorem 1 apply to (.)N,h~h' 
and ZV, N, provided the error term O(N ~), where present, is changed into 

O(N - ~) + a e x p [ - b  Min(i, N -  i)] 

for some fixed constants a and b. 

Proof. As in Ref. 6. 

Let us now denote 

tan 01(x) = tl((1 - 2x) c~) 

tan 02(x)= t~((1 - 2 x )  c~) 

we then find, using (2.7), 

flaa~(Ol(i/n)) (5.9) 
cA = c o s  Odi/N) 

( (  ~ )  ) flaBc(O2(i/n)) (5.10) 
log z2 1 - e~ = cos O2(i/N) 

and therefore, asymptotically, from (5.8) and its analogue in the corollary 

f~ dx 
log Zv, N = - N  fiaAB(Ol(x)) cos 01(x) 

-- N flasc(O2(x)) cos 02(x~) + O(log N) (5.ll) 



Meniscus in a Three-Phase System 1137 

Equations (5.9) and (5.10) also yield 

d t an  01(x) cos 01(x) dtan  02(x) cos 02(x) 

which can also be written 

sin 01(x) . [3a AB(OI(x) ) + COS 01(X)" fla'AB(OI(x) ) 

= sin 02(x). 13~%c(02(x)) + cos 02(x). l~a'sc(O2(x)) 

= (1 - 2 x )  c;~ (5.13) 

Equation (5.12) or (5.13) shows that the AB(ho...hu) and BC(h'o...hu) 
interfaces are given by Wulff constructions, with 

Y, hi = N 2 I1(c~) 

- Z h; = X 2 I2(c~) 

It is remarkable that the same constant cA occurs for both interfaces, even 
if the two shapes are very different, as will be the case if Pl(x) and P2(x) 
are very different. This is related to the second Herring relation (2.2), which 
is (5.13) taken at x = 0  or 1, and which is thus established for the statistical 
model defined in Theorem 1 and the Corollary. 

In order to complete our proof of the Wulff construction for a 
meniscus embedded in an interface, and of the corresponding first Herring 
relation, it is now necessary to show that within a "gas" of menisci subject 
to a global volume constraint, the bulk of the intruding phase will concen- 
trate in one large meniscus. For  simplicity of notation, we shall formulate 
our results for the restricted SOS model considered in the previous sec- 
tions, as defined in (2.15~(2.17), with the additional constraint 

N 

Z ( h i - h ; ) =  V (5.14) 
0 

The corresponding partition function will be denoted Y~V,N. Let us now 
describe configurations in terms of a gas of menisci: a meniscus of length 
l and volume v located at x is defined by the conditions 

hx=h" 

hi>h~, x < i < x + l  

h x + l = h ' + t  
x + l  

Z (h i -h ; )=v  
x 

( 1 -  2x) c;. (5.12) 

822/61/5-6-12 
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Then 

~ V , N  

n>~ l Vl---vn>~ l 

x ~ (Qx, y,-i vp, y,-x,) QN-y. (5.15) 
O ~ < X l < y l ~ <  . . ,  < X n < Y n < ~ N  

with Yo = O. We now call a meniscus "large" when its length l and volume 
v satisfy 

1) 

> (log N) ~ +~ (5.16) 

where e > 0 is fixed. The following theorem shows that all menisci except 
one will be small. 

T h e o r e m  2. Let h l . . . h x ,  h'l ""hN be distributed according to 
(2.15)-(2.17) and (5.14). Then for any sequence N ~  09 with V=)~N 2 
integer, we have 

[v  z =o ) logZv, N = l O g \ ~ ,  v,n~v V l , N - - n  1 + O ( l o g N  ~+~) (5.17) 

where ~o is defined as ~" with the restriction that there should be no V , N  ~ V , N  

large meniscus. 

ProoL As in ref. 7. 

It is now simple to complete the proof of the validity of the double 
Wulff construction (Fig. 2b) and of the Herring relations for our statistical 
mechanical model. The sum over v~ in (5.17) is restricted to 

V-N(logN)l+~ <vl < V 

Zvl n, is essentially constant in this interval, whereas ~,o has a , ~"~V V | , N - - n  1 

Gaussian distribution around V -  vl = cst(N- nl) of width ( N -  n~) 1/2. 
Summing over vl therefore gives 

log ~,v,u= log (~  Z~,n~QN_nl) + O(log N 1+~) (5.18) 

where QN is defined like ~" without any volume condition. The sum over V,N  

nl can now be analyzed as in the classical variational problem to obtain 
the first Herring relation (2.1). 
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A C K N O W L E D G M E N T S  

This  w o r k  has  benef i t t ed  f r o m  f inancia l  s u p p o r t  as pa r t  o f  a 

C N R S - C o m m u n a u t 6  F r a n q a i s e  de  Be lg ique  e x c h a n g e  p r o g r a m .  F . M .  is an  
I R S I A  Resea rcher .  
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